An Adaptation Theory for Nonparametric Confidence Intervals1 by T. Tony Cai
نویسنده
چکیده
A nonparametric adaptation theory is developed for the construction of confidence intervals for linear functionals. A between class modulus of continuity captures the expected length of adaptive confidence intervals. Sharp lower bounds are given for the expected length and an ordered modulus of continuity is used to construct adaptive confidence procedures which are within a constant factor of the lower bounds. In addition, minimax theory over nonconvex parameter spaces is developed.
منابع مشابه
An Adaptation Theory for Nonparametric Confidence Intervals
A nonparametric adaptation theory is developed for the construction of confidence intervals for linear functionals. A between class modulus of continuity captures the expected length of adaptive confidence intervals. Sharp lower bounds are given for the expected length and an ordered modulus of continuity is used to construct adaptive confidence procedures which are within a constant factor of ...
متن کاملMinimax and Adaptive Inference in Nonparametric Function Estimation
Since Stein’s 1956 seminal paper, shrinkage has played a fundamental role in both parametric and nonparametric inference. This article discusses minimaxity and adaptive minimaxity in nonparametric function estimation. Three interrelated problems, function estimation under global integrated squared error, estimation under pointwise squared error, and nonparametric confidence intervals, are consi...
متن کاملAsymptotic Equivalence Theory for Nonparametric Regression With Random Design
This paper establishes the global asymptotic equivalence between the nonparametric regression with random design and the white noise under sharp smoothness conditions on an unknown regression or drift function. The asymptotic equivalence is established by constructing explicit equivalence mappings between the nonparametric regression and the white-noise experiments, which provide synthetic obse...
متن کاملOn Information Pooling, Adaptability And Superefficiency in Nonparametric Function Estimation
The connections between information pooling and adaptability as well as superefficiency are considered. Separable rules, which figure prominently in wavelet and other orthogonal series methods, are shown to lack adaptability; they are necessarily not rate-adaptive. A sharp lower bound on the cost of adaptation for separable rules is obtained. We show that adaptability is achieved through inform...
متن کامل